Source code for hetseq.optim

import math

import torch


class _Optimizer(object):
    def __init__(self, args):
        super().__init__()
        self.args = args


    @property
    def optimizer(self):
        """Return a torch.optim.optimizer.Optimizer instance."""
        if not hasattr(self, '_optimizer'):
            raise NotImplementedError
        if not isinstance(self._optimizer, torch.optim.Optimizer):
            raise ValueError('_optimizer must be an instance of torch.optim.Optimizer')
        return self._optimizer

    @property
    def params(self):
        """Return an iterable of the parameters held by the optimizer."""
        for param_group in self.optimizer.param_groups:
            for p in param_group['params']:
                yield p

    def get_lr(self):
        """Return the current learning rate."""
        return self.optimizer.param_groups[0]['lr']

    def set_lr(self, lr):
        """Set the learning rate."""
        for param_group in self.optimizer.param_groups:
            param_group['lr'] = lr

    def state_dict(self):
        """Return the optimizer's state dict."""
        return self.optimizer.state_dict()

    def load_state_dict(self, state_dict, optimizer_overrides=None):
        """Load an optimizer state dict.
        In general we should prefer the configuration of the existing optimizer
        instance (e.g., learning rate) over that found in the state_dict. This
        allows us to resume training from a checkpoint using a new set of
        optimizer args.
        """
        self.optimizer.load_state_dict(state_dict)

        if optimizer_overrides is not None and len(optimizer_overrides) > 0:
            # override learning rate, momentum, etc. with latest values
            for group in self.optimizer.param_groups:
                group.update(optimizer_overrides)

    def backward(self, loss):
        """Computes the sum of gradients of the given tensor w.r.t. graph leaves."""
        loss.backward()

    def multiply_grads(self, c):
        """Multiplies grads by a constant *c*."""
        for p in self.params:
            if p.grad is not None:
                p.grad.data.mul_(c)

    def clip_grad_norm(self, max_norm):
        """Clips gradient norm."""
        if max_norm > 0:
            return torch.nn.utils.clip_grad_norm_(self.params, max_norm)
        else:
            return math.sqrt(sum(p.grad.data.norm()**2 for p in self.params if p.grad is not None))

    def step(self, closure=None):
        """Performs a single optimization step."""
        self.optimizer.step(closure)

    def zero_grad(self):
        """Clears the gradients of all optimized parameters."""
        for p in self.params:
            p.grad = None
        self.optimizer.zero_grad()


class _Adam(_Optimizer):
    """Adam optimizer for fairseq.
    Important note: this optimizer corresponds to the "AdamW" variant of
    Adam in its weight decay behavior. As such, it is most closely
    analogous to torch.optim.AdamW from PyTorch.
    """

    def __init__(self, args, params):
        super().__init__(args)

        self._optimizer = Adam(params, **self.optimizer_config)

    @property
    def optimizer_config(self):
        """
        Return a kwarg dictionary that will be used to override optimizer
        args stored in checkpoints. This allows us to load a checkpoint and
        resume training using a different set of optimizer args, e.g., with a
        different learning rate.
        """
        return {
            'lr': self.args.lr[0],
            'betas': eval(self.args.adam_betas),
            'eps': self.args.adam_eps,
            'weight_decay': self.args.weight_decay,
        }

class _Adadelta(_Optimizer):
    def __init__(self, args, params):
        super().__init__(args)

        self._optimizer = Adadelta(params, **self.optimizer_config)

    @property
    def optimizer_config(self):
        """
        Return a kwarg dictionary that will be used to override optimizer
        args stored in checkpoints. This allows us to load a checkpoint and
        resume training using a different set of optimizer args, e.g., with a
        different learning rate.
        #lr=lr, rho = rho, eps = eps, weight_decay = weight_decay)
        """
        return {

            'lr': self.args.lr[0],
            'rho': self.args.adadelta_rho,
            'eps': self.args.adadelta_eps,
            'weight_decay': self.args.dadelta_weight_decay,
        }

[docs]class Adam(torch.optim.Optimizer): """Implements Adam algorithm. This implementation is modified from torch.optim.Adam based on: `Fixed Weight Decay Regularization in Adam` (see https://arxiv.org/abs/1711.05101) It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(Adam, self).__init__(params, defaults) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') amsgrad = group['amsgrad'] p_data_fp32 = p.data.float() state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) if amsgrad: state['max_exp_avg_sq'] = state['max_exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) p_data_fp32.addcdiv_(-step_size, exp_avg, denom) #p_data_fp32.addcdiv_(step_size, exp_avg, denom) p.data.copy_(p_data_fp32) return loss
[docs]class Adadelta(torch.optim.Optimizer): """Implements Adadelta algorithm. It has been proposed in `ADADELTA: An Adaptive Learning Rate Method`__. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups rho (float, optional): coefficient used for computing a running average of squared gradients (default: 0.9) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-6) lr (float, optional): coefficient that scale delta before it is applied to the parameters (default: 1.0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) __ https://arxiv.org/abs/1212.5701 """ def __init__(self, params, lr=1.0, rho=0.9, eps=1e-6, weight_decay=0): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= rho <= 1.0: raise ValueError("Invalid rho value: {}".format(rho)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, rho=rho, eps=eps, weight_decay=weight_decay) super(Adadelta, self).__init__(params, defaults) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError('Adadelta does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) state['acc_delta'] = torch.zeros_like(p, memory_format=torch.preserve_format) square_avg, acc_delta = state['square_avg'], state['acc_delta'] rho, eps = group['rho'], group['eps'] state['step'] += 1 if group['weight_decay'] != 0: grad = grad.add(p, alpha=group['weight_decay']) square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho) std = square_avg.add(eps).sqrt_() delta = acc_delta.add(eps).sqrt_().div_(std).mul_(grad) p.add_(delta, alpha=-group['lr']) acc_delta.mul_(rho).addcmul_(delta, delta, value=1 - rho) return loss